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Unsteady RANS Based Models 

• URANS (Unsteady Reynolds averaged 
Navier Stokes) Methods 
 URANS gives unphysical single mode unsteady 

behavior 
 Some improvement  relative to steady state (RANS) 

but often not sufficient to capture main effects 
 Reduction of time step and refinement of mesh do 

not benefit the simulation 

 
 

• SAS (Scale-Adaptive Simulation) Method 
 Extends URANS to many technical flows 
 Provides “LES”-content in unsteady regions  
 Produces information on turbulent spectrum  
 Can be used as basis for acoustics simulations 

 

URANS  

 

SAS-URANS 
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Assumptions Two-Equation 
Models 

• Largest eddies are most effective in mixing 

• Two scales are minimum for statistical description of 

large turbulence scales 

• Two model equations of independent variables define 

the two scales 
 Equation for turbulent kinetic energy is representing the large scale 

turbulent energy 

 Second equation (e , w, kL) to close the system 

 Each equation defines one independent scale 

 Both e- and w-equations describe the smallest (dissipate) eddies, 

whereas two-equation models describe the largest scales 

 Rotta developed an exact transport equation for the large turbulent 

length scales. This is a much better basis for a term-by-term modelling 

approach 
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Classical Derivation 2 Equation Models 
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• The k-equation: 
 Can be derived exactly from the 

Navier-Stokes equations 

 Term-by-term modelling 

• The e- (w-) equation: 
 Exact equation for smallest 

(dissipation) scales  

 Model for large scales not based 

on exact equation  

 Modelled in analogy to k-

equation and dimensional 

analysis 

 Danger that not all effects are 

included 
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Source Terms Equilibrium – k-w Model 

Only one Scale in Sources (S~1/T) 

Turbulence Model Input S 

Output w 

Output k 

One input scale – two output scales? 

Source terms do not contain information on two 
independent scales 

 

 

2 2

2 2

1 2

( )( )

( )( )

j t
t

j j k j

j t

j j j

U kk k
S c

t x x x

U
c S c

t x x x



w w

w

 
 w



 w w w
 w



   
          

   
          



© 2011 ANSYS, Inc. October 17, 2013 6 

Determination of L in k-w Model 
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• Diffusion term carries 
information on shear-layer 
thickness  

• Turbulent length scale 
proportional to shear layer 
thickness 

• Finite thickness layer required 

• Computed length scale 
independent of details inside 
turbulent layer 

• No scale-resolution, as Lt 
always large and dissipative 
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Rotta’s Length Scale Equation 

• To avoid the problem that the e (w) equation is an equation 

for the smallest scales, an equation for the large (integral) 

scales is needed. 

• This requires first a mathematical definition of an integral 

length scale, L. 
 In Rotta’s (1968) approach this definition is based on two-point 

correlations 

• Based on that definition of L, an exact transport equation can 

be derived from the Navier-Stokes equations (the actual 

equation is based on kL) 

• This exact equation is then modelled term-by-term 

Rotta, J.C.: Über eine Methode zur Berechnung turbulenter Scherströmungen, 
Aerodynamische Versuchsanstalt Göttingen, Rep. 69 A14, (1968).  
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Two-Point Velocity Correlations 

Measurement of velocity fluctuations with two probes 
at two different locations  

For small r, all eddies contribute 

For large r, only large scales contribute 

For r > L, correlation goes to zero 

Integral vs. r proportional to size of large eddies L 
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Rotta’s k-kL Model 

Integral Length Scale: 
( , ) ( , , )iiL x t c R x t r dr





 
• The integral of the correlations 

provides a quantity, L,  with 
dimension ‘length’. 

• L is based only on velocity 
fluctuations and can therefore be 
described by the Navier-Stokes 
equations. 

• Exact equation for L (or kL, ..) can 
be derived.  

• L is a true measure of  the size of 
the largest eddies 
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Exact Transport Equation Integral 
Length-Scale (Rotta) 

Exact transport equations for F=kL (boundary layer form): 
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Expansion of Gradient Function 

Important term: 

• Rotta: 
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• If z3=0 - No natural length scale 

– No fundamental difference 
to other scale-equations 

Transport Equation Integral 
Length-Scale (Rotta) 

Transport equations for kL: 
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Virtual Experiment 1D Flow 
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New 2-Equation Model (KSKL) 

• With: 

LkF

 
 

22

1 2 32

1
''

j t
k t

j

U
P L U k

t x k y y


z z  z

k F

 F  F F  F 
        

      

2 2
'

' ; '' ;
''

i i i i
vK

j j j j k k

U U U U U
U U L

x x x x x x U
k

   
  

     

vKL
yU

yU
L 




22 /

/
~ k

v. Karman length-scale as natural length-scale: 

    3/ 2
3/ 4j t

k

j j k j

U kk k k
P c

t x L x x






    
          

1/ 4

t c  F



© 2011 ANSYS, Inc. October 17, 2013 15 

SAS Model Derivation  

• Using the exact definition and transport equation of Rotta, 

we re-formulated the equation for the second turbulence 

scale. 

• We use a term-by-term modelling approach based on the 

exact equation. 

• This results in the inclusion of the second velocity derivative 

U’’ in the scale equation 

• Based on U’’ the scale equation is able to adjust to resolved 

scales in the flow. 

• The KSKL model is one variant of the SAS modelling 

concept, as these terms can also be transformed into other 

equations (e- or w).  
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Transformation of SAS Terms to 
SST Model 

• Tranformation: 
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2-D Stationary Flows: KSKL - RANS 

NACA-4412 airfoil at 14°: trailing edge separation 

KSKL 
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Limitation of Growth by U’’ 
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Scale-Adaptation based on t 

SAS Modell - 2D Periodic Hill  

t = 0.045 h/UB 

4 higher t 

2 higher t 
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Time averaged velocity profiles U 

SAS Modell - 2D Periodic Hill 
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Fluent-SAS Model 
Volvo Bluff Body : Cold Case 

DES-SST SAS-SST 

Q = 1e6 
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VOLVO Cold Case 

Time-averaged 

U-velocity 
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Test case: Mirror Geometry 

 

EU project DESIDER Testcase 
 

Plate dimensions LW= 2.41.6  

 

Cylinder Diameter : D = 0.2 m 

 

Rear Face location :  0.9 m  

 

Free stream Velocity: 140 km/h 

  

ReD: 520 000  

 

Mach: 0.11  

 

 

 

 

 

2.4 m 
1.6 m 

140 km/h 
0.9 m 
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Test case: Mesh 

Mesh:   Box around the Plate & Cylinder 
  Height of domain: 10 diameters (D=0.2m) 

  Coarse and fine meshes 

  wall-normal distance around 1-3 *10 -4 m 

  obstacle edges resolution: step sizes around 0.02*D (height) -
0.03*D   (circumf.) 

 

Flow:   Air as ideal gas 
 

10D 
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Validation: Near field SPL 

Sensors downstream the  mirror 
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Grid ~ 3 million nodes 
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Blow-Down Simulation – SAS (SST) 

Mesh – 1x107 control 

volumes hybrid 

unstructured 

Scale resolving results: 
 SAS and DES show  

 similar flow pattern 

 SAS model does not 

 rely on grid spacing 

 SAS can be applied to moving 

meshes with more confidence 

 

Courtesy VW AG Wolfsburg: O. Imberdis, M. Hartmann, H. Bensler, L. Kapitza 

VOLKSWAGEN AG, Research and Development, Wolfsburg, Germany 

D. Thevenin University of Magdeburg 
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Flow Topology and Mass Flow 

Intake 

Valve 
Exp. RANS DES SAS 

3 mm 1 0.95 0.985 0.996 

9 mm 1 0.988 - 0.99 

Mass flow Rates 

Courtesy VW AG Wolfsburg: O. Imberdis, M. Hartmann, H. Bensler, L. Kapitza 

VOLKSWAGEN AG, Research and Development, Wolfsburg, Germany 

D. Thevenin University of Magdeburg 



© 2011 ANSYS, Inc. October 17, 2013 29 

Geometry of the Cavity 

• D = 4 in 

• L = 5 D, W = D  

• Lx  x Ly x Lz = 18 D x 17 D x 9 D 

• M = 0.85 

• P = 62100 Pa 

• T = 266.53 K 

• Re = 13.47 E 6 

 

 

 

 
Massflow 

Inlet 

Pressure far field 

Symmetry 

Outlet 
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Mesh: 5.8 e 6 Cv – double O-grid 

Inlet 
Side 

Bottom 
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Eddy viscosity ratio @  q = -500000 (q = 1/2 (S:S –W:W)) 

Turbulent structure by q-criterion 



© 2011 ANSYS, Inc. October 17, 2013 32 

Eddy viscosity ratio @  q = -500000 (q = 1/2 (S:S –W:W)) 

Wave propagation by Fluctuating 
Density 



© 2011 ANSYS, Inc. October 17, 2013 33 

k20 – k25  
k20 

k29 
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k26 – k29 
k20 

k29 
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Testcase Description –  
Experimental Test Facility and Data 

• The experimental data is provided by the Institute of 

Aerodynamics and Fluid Mechanics from TUM (not 

yet released)  

• Experiments are performed in a wind tunnel 

including a moving belt 

Courtesy by TU Munich, Inst. of Aerodynamics 
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Computational Mesh 2 

• 108,034,893 Cells 

• Four Refinement Boxes 

• MRF-Zones 

Number 

of 

Inflations 

First layer 

height 

Car 20 0.02 mm 

Road 20 0.02 mm 

Courtesy by TU Munich, Inst. of Aerodynamics 
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DrivAir Generic Car Model 

• Courtesy Tu Munich  

• Currently studied 

with ANSYS CFD 

(Fluent and CFX) 

• Data not yet public 
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Overall Summary 

• SAS is a second generation URANS model 
 It is derived on URANS arguments 

 It can resolve turbulence structures with LES quality 

 A strong flow instability is required to generate new – resolved 

turbulence 

• Examples 
 Flows past bluff bodies 

 Strongly swirling flows (combustion chamber) 

 Strongly interacting flows (mixing of two jets etc.) 

• SAS Model is first and relatively save step into Scale-

Resolving Simulations (SRS) modeling 
 Worthwhile to try 

 Alternative Detached Eddy Simulation (DES) 


